Homework 3

(Due date: October 27th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (25 PTS)

a) Complete the timing diagram of the circuit shown below. (5 pts)

b) Complete the timing diagram of the circuit whose VHDL description is shown below: (5 pts)

c) Complete the timing diagram of the circuits shown below: (15 pts)

PROBLEM 2 (25 PTS)

• Complete the timing diagram of the circuit shown below: (10 pts)

• Complete the VHDL description of the synchronous sequential circuit whose truth table is shown below: (5 pts)

<pre>library ieee; use ieee.std_logic_1164.all;</pre>	clrn	clk	A	в	Q _{t+1}
entity my_ff is	1		0	0	Qt
port (a, b, c: in std_logic; clrn, clk: in std_logic; q: out std logic);	1		0	1	Qt
end my_ff;	1		1	0	С
architecture a of my_ff is	1		1	1	В
??? end a;	0	Х	Х	Х	0

• Complete the timing diagram of the circuit shown below. $Q = Q_3 Q_2 Q_1 Q_0$ (10 pts)

PROBLEM 3 (20 PTS)

• Given the following circuit, complete the timing diagram (signals *DO* and *DATA*). The LUT 6-to-6 implements the following function: $OLUT = [ILUT^{0.95}]$, where ILUT is an unsigned number. For example $ILUT = 35 (100011_2) \rightarrow OLUT = [35^{0.95}] = 30 (011110_2)$

PROBLEM 4 (30 PTS)

The following circuit is a 4-bit parallel/serial load shift register with enable input.

- Shifting operation: $s_1=0$. Parallel load: $s_1=1$. Note that $Q = Q_3Q_2Q_1Q_0$. $D = D_3D_2D_1D_0$
- ✓ Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will interconnect the flip flops and MUXes). Provide a printout. (10 pts)
- ✓ Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your circuit (Timing Simulation). The clock frequency must be 50 MHz with 50% duty cycle. Provide a printout. (20 pts)

